第一百五十四章 材料一小步,科技前进一大步第(2/3)页
商业实用价值。
尽管stn相较于tn只是前进了一小步,但这一小步,却是科学发展的一大步!
全世界科学家们研究了十多年都无法迈过的一步,中美电子研究所的研究员们,却在郭逸铭的引导下,只用了两年就轻松地跨了过去。
能够实现这一步跨越的原因很简单,新型液晶材料的出现,让stn成为现实!
最早的液晶材料是1988年奥地利植物学家莱内泽对安息香酸胆石醇进行加热时发现,此后经过了数十年,包括1968年rac公司研发的液晶显示屏,其液晶材料都不稳定。直到73年英国哈尔大学格雷教授发现琏苯系液化合物,才首次找到了一种稳定的液晶材料。
八十年来,无数的科学家们作了数十万次试验,试验了数以万计的配方,才终于确定了这么一种可靠的液晶材料!
由此可见,材料的进步是多么艰难。
而没有材料的进步,就没有人类科学的进步!
液晶矩阵驱动技术很简单,也早为无数人所尝试过无数次,为其绞尽脑汁。只因为没有一种可靠的液晶材料,就只能成为井中之月、可望而不可及。
但在郭逸铭这个材料专家的引导下,中美电子研究所的研究员们一开始就确定了研究方向——二苯乙炔类化合物!然后再经过两年来数千次反复试验、修改配比,终于研发出适用于stn技术的液晶材料。
一切就这么简单!
而他还没有拿出更好的液晶材料来,二苯乙炔类化合物适用于stn,但却不是下一代tft液晶的好材料。按他的预计,国际上要找到下一代液晶材料,至少需要十年时间,这足够他利用stn大赚特赚了。
当然,研究中偶然因素很多,万一有人运气好碰巧找到了下一代液晶材料,到时候他再拿出更新好的液晶材料就是了。
在他这个熟知各种后世成熟材料配方、制造工艺的材料学家面前,其他科学家们只有泪流满面一条路可走。
走别人的路,让别人无路可走,就是他的信条!
中美电子研究所这次推出的手机显示面板,就是采用stn技术研发的产品。在这块一公分宽、五公分长的小小透明玻璃中,嵌着24x128个透明液晶点阵,而其边框,则纵横各分部着两条导电条。只要给与正确的纵横电压,每屏就能显示出单行7个汉字来。
并且在屏幕顶上,还留有电池余量、信号强弱、收到短信等信息的显示空间。
要在手机上显示汉字,光是显示屏采用了stn液晶技术还不够,还需要手机本身的汉字库支持。
在手机内专门有一个集成电路,固化存储着国标一、二级字库,共有6763个常用汉字,另外还有682个英文字符和数字、拉丁字母、日文假名、希腊字母等字库,其存储容量达到了16kb。
汉字库是委托材料所代为制造。
国内半导体技术虽然这几年发展很快,可依然做不到在一块芯片上集成16k存储芯片。同时解决这个难题,中美电子研究所向材料所转让了他们最新开发的层叠式薄型小尺寸封装技术。
为了保证硅片不被大气中的杂质所污染、腐蚀,所有的裸晶片都会进行封装,从晶片上引出连接引脚之后,用金属、陶瓷或是塑料将其与空气隔离开来。一块芯片中,光刻着电路的裸晶片其实很小很小。
目前国际上通用的仍是第二代封装技术,也就是双列直插式封装。
一块集成电路两边像蜈蚣腿一样各伸出一排引脚,这就是双列直插式封装了。由于有着规范的标准,芯片可以直接焊接在电路板上,设计、布局、焊接维修都很方便,因此很快流行开来。
但这种封装的效率很低。
其裸晶片和封装尺寸之间的比例,仅有百分之几,最高的封装效率也只有7%,大量空间都浪费掉了。这种封装模式用于普通电器产品自然没问题,空间不够,只要加大电路板尺寸就能轻易解决。
由于它封装简单、成本低廉,且没有小型化的迫切需求,所以这么多年来,尽管也有更具效率的封装技术出现,却并没有大规模流行开来。
但在尺寸小巧的手机、未来的便携式cd机上,这种技术封装的芯片就极不适用。且不说电器内狭小的空间能否容纳,就算勉强塞进去,大量元器件拥塞散发的热量就将使得各种元器件可靠性大大降低。
在郭逸铭的直接指导下,研究人员们开发了薄型小尺寸封装技术。
这种封装技术,不再是将裸晶片直接与引脚焊接在一起,而是通过了一根细小的金线,引出数据线到引脚上。没有了巨大的焊点,芯片尺寸大为降低。
但这还不够。
采用了薄型小尺寸封装技术,其空间利用率最高也仅达到30%。它比直插式高很多,但仍远不能满足手机这类微型电器的需要。
于是在这种技术之上,研究人员们进一步开发了层叠式薄型小尺寸封装技术。
他们在完成了第一层裸晶片的键合(将晶片与引脚相连)之后,在其上方粘贴了一层空白晶片,随后再粘贴第二层裸晶片,进行第二次键合。
这样下来,一个小小的芯片内就嵌入了两层晶片,将空间利用率陡然提升了一倍。
如果还要再粘贴第三层、第四层也是可以的,但实际上却得不偿失。每一次粘贴、每一次键合,都会对晶片造成一次污染,次数越多,污染越严重,良品率越低,晶片的性能也越有可能受到影响而降低。
其实两次层叠已经大大提高了污染的几率,也增加了制造成本。
在郭逸铭的引导下,研究人员们不断改进工艺,替换了材料,用环氧树脂薄膜胶带替换常规的蓝膜粘接剂,用一次成型技术完成三枚裸晶片的粘接。同时改造了键合设备,一次完成两片、最高三片裸晶片的键合工序,取得了极佳的效果。
经过改进的封装工序,使得芯片空间利用率达到了最高90%,已接近1:1的利用率。而且封装工艺难度甚至低于单晶片,成品率极高,生产周期大幅缩短,成本仅比单晶片略高,可说是成果巨大。
采用了层叠式薄型封装技术,一枚小芯片内就嵌入了两层存储芯片,容量达到了16kb,固化入全部国标一
-->>(第2/3页)(本章未完,请点击下一页继续阅读)
备用站:www.lrxs.org